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Humans have the ability to flexibly synchronize motor output

with sensory input, such as when dancing, performing, walking

in step with a partner, or just tapping a foot along with music.

The study of these behaviors, collectively called sensory-motor

synchronization (SMS) offers an important window into human

timing behavior and the neural mechanisms that support it. The

study of SMS also provides insight into how the brain actively

shapes our perception, general cognitive functions and our

cultural social identity as humans. In this brief review, we will

place SMS into a larger conceptual framework and highlight a

rapidly expanding body of recent research.
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Basic SMS
Sensory-motor synchronization (SMS) refers to the coor-
dinated temporal relationship between body movement
and rhythmic patterns in the environment, typically in a
periodic context [1,2]. As such, SMS implies not mere
reaction to stimuli, but their anticipation, in order to
enable phase locking with near synchrony as thoroughly
reviewed by Repp and colleagues [3,4]. To summarize,
SMS is canonically studied using paradigms in which
participants tap a finger in time with a periodic stimulus
such as a regular series of auditory beeps or visual flashes.
The accuracy of synchronization is typically assessed with
measures such as the mean and variance of tapping tempo
and tap-to-stimulus asynchrony, or using circular mea-
sures such as phase-locking strength. SMS exists over a
limited range of rates (!10 Hz to !0.5 Hz), is often
anticipatory, and is stable to perturbation. Two corrective
processes have been proposed to maintain synchroniza-
tion: phase correction (operating to minimize asynchrony
between stimulus and response timing) and period

correction (operating to minimize tempo mismatch be-
tween stimulus and response). These features have tra-
ditionally been modeled from one of several perspectives:
event-based (e.g. [5"]), or dynamical systems (e.g. [6"]).

SMS in context
Beyond the flexible capacity for overt synchronization of
movement with stimuli, humans also possess a rich ability
to internally model periodic timing that impacts percep-
tion even in the absence of movement. The precise
mechanistic and phylogenetic boundaries between a sim-
ple capacity for SMS and a more internalized capability
for complex beat, which we might call ‘rich beat percep-
tion and synchronization’ (rich BPS) are not agreed upon,
and are blurred together in some accounts. Here we
propose a conceptual model comprising three interacting,
and potentially nested, neural architectures that seem
necessary to account for the range of human timing
behaviors (Figure 1): first, a neural link between sensory
and motor systems, obviously needed for sensation to
drive synchronized movement; second, hierarchical com-
plexity of sensory and motor representations, needed to
go beyond simple modes of synchronization to more
flexible sensory-motor couplings; third, a reciprocal neu-
ral link from motor to sensory regions, needed for top-
down control of perception by motor activity.

A first precondition for SMS is the presence of a neural
link by which sensory activity can influence motor pattern
generation (inner box). It is likely that these sensory-
motor connections are not found in many animals [7].
Second (middle box), further elaboration of the complex-
ity of temporal representations of sensation and motor
planning, by feeding into basic synchronization mecha-
nisms, could enable more complex and flexible patterns
of synchronization. These include short-term pattern
memory, subdivision, polyrhythms, metricality and flexi-
bility in output effectors and patterns. Third (outer box),
the presence of a reciprocal connection from the motor to
sensory systems is proposed to open rich possibilities for
an internal sense of pulse to influence how we organize and
perceive rhythmic patterns, enabling rich BPS. The sense
of pulse (or ‘beat’), generated possibly by the motor
planning system but yet divorced from both the need
to move and from the external stimuli, may enable us to
actively structure events in the flow of time (e.g. [8"]). In
humans, at least, patterns of sound become rhythms only
through interaction with our brains: Perception relative to
a pulse gives sensory events rhythmic meaning, distin-
guishing for example up-beats from down-beats, and
enabling perception of syncopation. In humans, these
relationships can be further modified at will, implying
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the presence of additional mediating, transformative
influences between sensory and motor systems.

Modality specificity
Entrainment to environmental stimuli is possible through
many sensory systems: auditory, visual, tactile, or vestib-
ular, but an auditory advantage has long been supposed.
For SMS to temporally discrete auditory and visual sti-
muli (e.g. beeps versus flashes) an auditory advantage has
been consistently found and ascribed to differential con-
nectivity between auditory, visual and motor systems
[9,10]. However, recent studies have shown that periodi-
cally moving ‘bouncing’ visual stimuli are able to drive
discrete (tapping) synchronization with accuracy
approaching or equal to auditory beeps [11–13]. These
demonstrations suggest that synchronization performance
depends more on the quality or modality-appropriateness
of time representation than on modality per-se, with the
compatibility of a stimulus with the sensory conse-
quences of the synchronized movement in a given mo-
dality as a potentially important factor [14]. Supramodal
mechanisms are supported by putamen activation that
correlates with SMS accuracy, regardless of modality [12],
and by similar evoked responses to visual and auditory
stimuli in a tempo judgment task [15]. The ability of

non-auditory stimuli to drive more complex forms of
rhythmic perception is only beginning to be studied, with
several suggestions that moving visual stimuli may also be
able to drive metrical perception [11,16,17]. Finally, it has
recently been shown that auditory experience is not
necessary for the development of robust synchronization:
congenitally deaf individuals synchronize with visual
inputs as well, or better than hearing individuals [11].

Entrainment and timing in movement
production: event versus emergent timing
For many years, it had been assumed that sensorimotor
timing is a general-purpose capability. This implies that
someone with good sensorimotor timing skills at drawing
would be a good piano player, implicating an effector-
neutral clocking mechanism underlying the timing of all
actions. Recent research has shown that this is not always
the case. In particular, people who are highly skilled at
finger tapping are not necessarily skilled at circle drawing
and vice versa. The suggestion of multiple timing mech-
anisms has been confirmed by neuropsychological evi-
dence showing that patients with cerebellar damage
exhibited larger variability in finger tapping, but not
for circle drawing [18]. It has been further suggested that
two modes of timing exist: ‘event’ timing, under the
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Conceptual hierarchy of neural architectures underlying human periodic timing abilities. The inner box encompasses ‘basic’ 1:1 SMS and requires
a forward link between sensory (here, auditory) and motor processing (thick arrow). The middle box encompasses elaborations on sensory and
motor representations that enable humans to flexibly select among more complex forms of synchronization. The outer box adds a link from motor
to sensory systems to enable internal models of the beat to shape sensory processing. Willful control over transformations is indicated by nodes
within the arrows.
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control of cerebellar processes, requires the existence of
discrete events defining the timing task. By contrast,
‘emergent’ timing governs tasks for which timing
emerges from the movement of the effectors, and is
not thought to use cerebellar timekeeping resources [19"].

Recent studies [20] suggest that the invocation of event
and emergent timing may not be solely due to cerebellar
processes. When participants receive an auditory click or
feel a tactile bump every time they cross a timing target
during circle drawing [21], the pattern of errors for circle
drawing resembles those seen in finger tapping [20]. It
can be argued that the nature of event and emergent
timing might have more to do with movement-specific
sensory feedback than to kinematic or peripheral proper-
ties, arguing that the timing process also reflects percep-
tual goals. While continuous (emergent) and discrete
(event-based) motor tasks might involve distinct timing
mechanisms, they often co-exist in common human beha-
viors [22] and can be elicited by stimulus [23] or task
demands [24,25]. Thus one could argue that both sensory
and motor goals, or their combination, may lead to seem-
ingly different timing strategies.

Neural substrates of SMS and BPS
The components of the brain involved in SMS, exten-
sively studied using fMRI, have been reviewed recently
[26,27""]. The latter is a meta-analysis of 43 studies
demonstrating consistent activation of a range of cortical
and subcortical structures: sensorimotor, premotor, sup-
plementary motor and parietal cortex, along with basal
ganglia and cerebellum. These regions were involved in
different configurations for externally driven SMS versus
internally paced continuation. Broadly, cerebellar circuits
were active only during SMS, but not continuation,
suggesting their importance for coordinating movement
timing and stimulus-driven timing. Striatal areas were
active for both SMS and self-paced tapping, suggesting a
role in generation of periodicity. This interpretation
complements the model of Teki et al. [28], which sug-
gested cortical–cerebellar networks primarily compute
sensorimotor asynchronies at a single interval level, while
cortical–striatal networks exploit periodicity, perhaps
through interval timing mechanisms proposed by the
striatal beat frequency model [29]. It is tempting to
map these systems onto behavioral observations of two
error correction modes: phase and period [5",30"], al-
though there are alternative proposals [31]. Beyond basic
SMS, more complex polyrhythmic synchronization
results in activation of additional cortical areas including
parietal and inferior frontal cortex (reviewed in [32]),
while rhythmic manipulation may involve parietal cortex
[33].

SMS can be modeled elegantly, for example, as depend-
ing on the behavior of systems of coupled oscillators [6"],
as depicted conceptually in Figure 1. While this may be a

sufficient mechanistic model for simpler forms of SMS in
some animals, neural mechanisms in humans are evident-
ly more elaborate. It may well be that it was the evolution
of overlap and interaction between the two timing mech-
anisms that enabled human SMS to emerge: indeed, the
existence range of SMS closely corresponds to the tem-
poral interval range over which both systems are active in
interval timing [34].

While considerable progress has been made on describing
the regions activated in beat perception, understanding of
the dynamic activity and interactions of these regions
during both SMS and beat perception is less fully ex-
plored. A number of studies have shown that sound-
evoked brain responses are modulated by an internal
beat [35–40], often in the beta band, which has suggested
to numerous authors [38,39,41,42] that such modulation
could have a motor origin. Complementing work in
humans, Merchant and colleagues have examined
SMS-related activity in macaques [43""].

Motor influences on perception
An important feature of human timing behavior is that
internal models of periodic timing can influence the
perception of rhythms (outer box in Figure 1). The notion
that perception is active is an old one, from at least the
time of Helmholtz, but one that is currently attracting a
large amount of attention in neuroscience in general [44]
and more specifically in the area of rhythm perception
[31,32,45–47]. These accounts build either on the dynam-
ic attending theory of Jones (e.g. [48]), on common-
coding theories (e.g. [49–51]), or on motor theories of
perception, which have a long history [52,53], and which
we will focus on here. A core idea is that not only does
sensory input drive motor planning, but that motor
regions can also generate sensory predictions regarding
the impact of planned or executed actions. A range of
neural research supports a role of the motor system in
generating perceptual predictions: cortical motor plan-
ning and striatal activity has consistently been observed
while listening to, but not overtly synchronizing with,
rhythms that induce a strong sense of periodic beat [54–
57], motor areas show effectivity connectivity with sen-
sory areas during beat perception [54], together with the
beta-band involvement cited above.

The idea that motor structures are involved in perceptual
judgments in general even when action is not required is
gaining wide acceptance [58",59"",60]. However, precise-
ly how the motor system might impact auditory percep-
tion is not known, with proposals that it, acts
suppressively [61], offers constraints for the existence
range of beat perception [31], or serves as a source of
sensory predictions that also shapes rhythmic perception,
as in the ASAP (Action Simulation for Auditory Predic-
tion) hypothesis [8"], which suggests that auditory pro-
cessing uses the motor planning system as a source of
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predictive inputs based on an abstract internal model of
time, not necessarily tied to explicit motor simulation in
ASAP, motor planning activity is not only used for pre-
diction, but is also hypothesized to causally shape per-
ception, through the dorsal auditory stream linking
premotor, parietal and auditory cortices in order to im-
plement bidirectional sound-motor transformations.

Evolutionary origins
The tendency to synchronize movement with sound,
especially with others, appears to be universal in human
culture and has been recognized by some as an important
stage of human evolution, responsible in part for enabling
the cohesion or advertising of larger social groups [62–64].
The origins of human rhythmic abilities are a matter of
vigorous debate and speculation. Origin accounts of SMS
range from being an adaptation for sexual selection,
communication, group cohesion, to being a non-evolved
side effect of other evolved traits (reviewed in [65]), and
debate has been spurred by a recent spate of comparative
studies exploring the limits of SMS in non-human animals
including parrots, primates, and sea lions [66–71] as well
as prior descriptions of naturally occurring SMS behaviors
for instance in insects and frogs (reviewed in [72"]), and
temporal sequencing and grouping abilities in other spe-
cies [73]. There are many recent reviews of comparative
SMS, some emphasizing the continuity of human abilities
with those of other species, based on shared mechanisms
(e.g. [72",74]), with others seeking to explain why human
abilities are not widely found in other animals, for exam-
ple due to different patterns of brain connectivity (e.g.
[8",75]). In terms of the model of Figure 1, for the most
part, only rudimentary (1:1) SMS represented by the
inner box has been observed in other species and it is
typically of limited flexibility in comparison with human
SMS. To date, only a few species (vocal-learning birds
and a sea lion) have been shown to be capable of ‘Com-
plex SMS’ by synchronizing to the beat of more complex,
musical stimuli, indicating a capacity to extract a beat
from a complex auditory stimulus, and even to map
flexibly to different motor outputs [66,69,76]. Evidence
for hierarchical metrical perception or other aspects of
rich BPS has not yet adequately been examined in non-
human animals [77,78].

Future prospects
It is a time of plenty in rhythm research. We have
reviewed a number of currently active fronts in the study
of sensorimotor timing behaviors and their underlying
neural mechanisms. Much work remains to be done in
moving toward a complete description of the dynamic
interactions between cortical and subcortical regions un-
derlying SMS and beat-based perception, using a combi-
nation of human and primate electrophysiology, together
with causal analysis and system perturbation using tech-
niques such as transcranial magnetic stimulation to tem-
porarily enhance or suppress local cortical function. Such

research will enable models and comparative theories to
be increasingly grounded in specific brain circuits. A
second hot topic is the degree to which training in
SMS and complex beat perception might benefit non-
musical abilities in the domains of language and cognition
(e.g. [79"",80–83]). SMS research also raises important
questions regarding sensory prediction mechanisms for
action control when interacting with others. In particular,
the question of how individual differences are manifest in
these abilities needs to be addressed at the neural and
behavioral levels [84,85]. Finally, comparative experi-
ments attempting to test if animals possess more complex
aspects of SMS and beat-based rhythmic behavior will be
needed to further inform hypotheses of the origins of beat
perception.
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